Mark Scheme 4732 January 2007

Note: " 3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW. Penalize over-rounding only once in paper, except qu 8 (ii).

1 i	$\begin{aligned} & 1-(3 / 10+1 / 5+2 / 5) \\ & 1 / 10 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or ($3 / 10+1 / 5+2 / 5)+p=1$
ii	$\begin{aligned} & 3 / 10+2 \times 1 / 5+3 \times 2 / 5 \\ & 19 / 10 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	$\div 40 \mathrm{r} 6 \Rightarrow \mathrm{M} 0 \mathrm{~A} 0$
Total		4	
2 i		$\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	$\operatorname{dep}-1 \leq r \leq 1$ ft their $S^{\prime} \mathrm{s}\left(S_{x x} \& S_{y y}+\mathrm{ve}\right)$ for M1 only
ii	Small sample oe	B1f 1	
Total		6	
3 i	120	B1 1	not just 5!
iia	$\begin{aligned} & 3 \times 4!\text { or } 72 \quad(\div 5!) \\ & 3 / 5 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$	oe, eg ${ }^{72} / 120$
b	Starts 1 or 21 (both) $\begin{aligned} & 1 / 5+1 / 5 \times 1 / 4 \\ & =1 / 4 \text { oe } \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$12,13,14,15,(\geq 2$ of these incl 21 , or allow 1 extra) can be implied by wking or 5×3 ! or $4!+3$! $(\div 5!)$ complement: full equiv steps for Ms
Total		6	
4ia	W \& Y oe	B1 1	
b	X oe	B1 1	
ii	Geo probs always decrease or Geo has no upper limit to x or $x \neq 0$	B1 1	Geo not fixed no. of values diags have fixed no of trials not Geo has +ve skew
iii	W Bin probs cannot fall then rise or bimodal	B1 B1dep 2	indep allow Bin probs rise then fall
Total		5	
5 i		M1 A1 M1 A1 4	Correct sub in any correct formula for b (incl. $(x-\bar{x})$ etc) $\begin{aligned} & \text { or } a=106.8 / 8-0.777 \mathrm{x}^{140} / 8 \\ & \geq 2 \text { sfs sufficient for coeffs } \end{aligned} \quad \text { ft } b \text { for M1 }$
ii	$\begin{aligned} & 0.78 \times 12-0.25 \\ & =9.1(2 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1f } 2 \end{aligned}$	M1: ft their equn A1: dep const term in equn
$\begin{gathered} \text { iiia } \\ \text { b } \end{gathered}$	Reliable Unreliable because extrapolating oe	$\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$	Just "reliable" for both: B1
Total		8	

6 i	$\begin{aligned} & \operatorname{Geo}(2 / 3) \text { stated } \\ & (1 / 3)^{3} x^{2 / 3} \\ & =2 / 81 \text { or } 0.0247(3 \mathrm{sfs}) \end{aligned}$		3	or implied by $(1 / 3)^{n} \mathrm{x}^{2 / 3}$

ii	$\begin{aligned} & (1 / 3)^{3} \\ & 1-(1 / 3)^{3} \\ & 26 / 27.0 \text { or } 0.963 \text { (3 } \mathrm{sfs} \text {). } \end{aligned}$	M1 M1 A1 3	$\begin{aligned} & \text { or } 2 / 3+1 / 3 \mathrm{x}^{2} / 3 /\left(1 / 3 \mathrm{I}^{2} \mathrm{x}^{2} / 3: \mathrm{M} 2\right. \\ & \text { one term omitted or extra or wrong: M1 } \\ & 1-(1 / 3)^{4} \text { or } 1-\left({ }^{2} / 3^{2}+1 / 3 \mathrm{x}^{2} / 3+(1 / 3)^{2} \mathrm{x}^{2} / 3\right): \mathrm{M} 1 \end{aligned}$
iii	$\begin{aligned} & 1 / 2 / 3 \\ & =3 / 2 \text { oe } \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	
Total		8	
7 i	$2 / 9$ or $7 / 9$ oe seen $3 / 9$ or $6 / 9$ oe seen $1 / 8$ or $7 / 8$ oe seen Correct structure All correct	$\begin{array}{ll} \hline \text { B1 } & \\ & \\ \text { B1 } & 5 \end{array}$	ie 8 correct branches only, ignore probs \& values including probs and values, but headings not req'd
ii	$\begin{aligned} & 3 / 10 \times 7 / 9+7 / 10 \times 3 / 9+7 / 10 \times 6 / 9 \\ & 14 / 15 \text { or } 0.933 \text { oe } \end{aligned}$	$\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{~A} 1 \end{aligned}$	or $3 / 10 \mathrm{x}^{7} / 9+7 / 10$ or $1-3 / 10 \mathrm{X}^{2} / 9$ M1: one correct prod or any prod $+7 / 10$ or $3 / 10 \times 2 / 9$
iii	$\begin{aligned} & 3 / 10 x^{2 / 9 x} / 8+7 / 10 \times 6 / 9 \\ & 21 / 40 \text { or } 0.525 \text { oe } \end{aligned}$	$\begin{array}{ll} \mathrm{M} 2 \\ & \\ \text { A1 } & 3 \end{array}$	M1: one correct prod cao
	No ft from diag except: with replacement: (i) structure: B1 (ii) $^{91} / 100: \mathrm{B} 20$ (iii) 0.553 : B2		
Total		11	
8 i	$\begin{aligned} & \mathrm{Med}=2 \\ & \mathrm{LQ}=1 \text { or } \mathrm{UQ}=4 \\ & \mathrm{IQR}=3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	cao or if treat as cont data: read cf curve or interp at 25 \& 75 cao
ii	Assume last value $=7$ (or eg 7.5 or 8 or 8.5) $x f$ attempted ≥ 5 terms 2.6 or 3 sf ans that rounds to 2.6 $x^{2} f$ or $\left.\quad . x-m\right)^{2} f \quad \geq 5$ terms $\sqrt{ }\left(x^{2} f / 100-m^{2}\right)$ or $\left.\sqrt{ }(. x-m)^{2} f\right) / 100$ fully correct but $\mathrm{ft} m$ 1.6 or 1.7 or 3 sf ans that rounds to 1.6 or 1.7		stated, \& not contradicted in wking eg 7-9 or 7,8, 9 Not just in wking allow "midpts" in $x f$ or $x^{2} f$ dep M3 penalize >3 sfs only once
iii	Median less affected by extremes or outliers etc (NOT anomalies)	B1 1	or median is an integer or mean not int. or not affected by open-ended interval general comment acceptable
iv	Small change in var'n leads to lge change in IQR UQ for W only just 4 , hence IQR exaggerated orig data shows variations are similar	B1 1	for Old Moat LQ only just $1 \&$ UQ only just 3 oe specific comment essential
v	OM\% (or y) decr (as x incr) oe Old Moat	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	ranks reversed in OM or not rev in W NIS
Total		13	

9 i	$\begin{aligned} & { }^{11} \mathrm{C}_{5} \times(1 / 4)^{6} \times\left({ }^{3} / 4\right)^{5} \\ & 0.0268(3 \mathrm{sfs}) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	or $462 \times(1 / 4)^{6} \times(3 / 4)^{5}$
ii	$\begin{aligned} & q^{11}=0.05 \text { or }(1-p)^{11}=0.05 \\ & \sqrt[11]{0.05} \\ & q=0.762 \text { or } 0.7616 \ldots \\ & p=0.238(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 A1f 4	$(\text { any letter except } p)^{11}=0.05$ oe oe or invlog $\left(\frac{\log 0.05}{11}\right)$ ft dep M2
iii	$\begin{aligned} & 11 \times p \times(1-p)=1.76 \quad \text { oe } \\ & 11 p-11 p^{2}=1.76 \quad \text { or } p-p^{2}=0.16 \\ & 11 p^{2}-11 p+1.76=0 \quad \text { or } p^{2}-p+0.16=0 \\ & \left(25 p^{2}-25 p+4=0\right) \\ & (5 p-1)(5 p-4)=0 \\ & \text { or } p=\frac{11-\frac{1\left(11^{2}-4 \times 11 \times 1.76\right)}{2 \times 11}}{} \\ & p=0.2 \text { or } 0.8 \end{aligned}$	M1 A1 A1 M1 A1 5	not $11 p q=1.76$ any correct equn after mult out or equiv with $=0$ or correct fact' n or subst' n for their quad equ'n eg $p=\frac{1 \pm \frac{/(1-4 \times 0.16)}{2}}{2}$
Total		11	
Total 72 marks			

